
Report
Selfhack AI* Penetration Testing Report

example.com
SH010333

WWW.SELFHACK.FI

CONTENTS

1. Executive Summary
1.1 Scope
1.2 Target
1.3 Report For C-Level

1.3.1 Worst Case Scenario
1.3.2 Business Impact
1.3.3 Technical Risk Assessment
1.3.4 Solution Proposal for the Manager

2. Approach
2.1 Testing Method
2.2 Scope and Timeline
2.3 Test Classes
2.4 Disclaimer

3. Summary of Vulnerability Risks and Number
4. Detailed Analysis and Findings Cards

4.1 Verbose Error Exposure on Parameter Type Mismatch
4.2 IP Block Bypass via X-Forwarded-For Header Spoofing
4.3 CAPTCHA Bypass via Client-Side Only Validation
4.4 Technology Stack & Version Disclosure via Verbose Error
Pages

5. Version History
Addition A.1 Risk Calculation
Addition A.2 Total Risk Score

Private | SH010333

2

https://www.canva.com/design/DAGOdzOklPY/GpT7M8myxbWZV4VpVlZxMw/edit

1 Executive Summary

 The following section summarizes the scope of the security assessment,
the assessment results, and sets out the countermeasures
recommended by SelfHack AI.

1.1 Scope

During the security assessment conducted for the
example.comapplication.

SelfHack AI, https://www.example.com/ evaluated using the black box
approach in web application 25-03-2025 | 27-03-2025 date.

............................

............................

No customers were harmed or interrupted during the tests.

Private | SH010333

3

1.2 Target

The goal of the assessment was to identify any possible vulnerabilities in
https://www.example.com/ and uncover common configuration issues.

In this process, attention was paid to the following components and
questions:

All kinds of security problems that may be client-based and server-
based on the application side were tested. These tests were performed
on globally accepted security frameworks such as OWASP Top Ten, NIST
etc.. The vulnerabilities tested include the following titles:

IDOR (Insecure Direct Object Reference) vulnerabilities
Business logic vulnerabilities
SQL injection
XSS (Cross-Site Scripting)
CSRF (Cross-Site Request Forgery)
Weak authentication mechanisms
Breakable session management
File upload vulnerabilities
Insecure APIs
Privilege escalation vulnerabilities
Insecure data storage
Insecure data transmission (HTTP usage, SSL/TLS configuration
issues)
Open Redirect
Local file inclusion

Private | SH010333

4

File Inclusion (RFI)
XML External Entity (XXE) vulnerability
JSON injection
Clickjacking attacks
Denial of service (DoS) and distributed denial of service (DDoS)
attacks
Weak password policies and crackable passwords
Misconfigured security headers
CORS (Cross-Origin Resource Sharing) configuration
vulnerabilities
Cache vulnerabilities
Patch deficiencies and use of outdated software components
Command Injection
LDAP injection
Insecure file upload
Security practices incompatible with desktop or mobile
platforms
Content security policy (CSP) deficiencies
Content manipulation and data integrity issues
Unspecified vulnerabilities that can be discovered with fuzzing
tests
Timing attacks
Side-channel attacks

The scope of this security assessment is not to determine or verify
the legal requirements and necessary information obligations in
case the software is used by a real corporate structure or
individuals. This assessment is purely a pre-test to prevent
hacking by malicious attackers in field operations.

Private | SH010333

5

1.3 Executive Summary of the AI Powered Penetration Test
Report for C-Level Management

The SelfHack AI-powered penetration test conducted on
www.example.com uncovered multiple security weaknesses across
application layers, exposing the platform to operational, reputational,
and regulatory risks. These findings indicate a need for immediate
remediation, enhanced input validation, and a shift toward secure-by-
design principles.

🔢 1. Parameter Type Mismatch Causes Oracle Leak High (CVSS 8.3)
Submitting string input (e.g., 20-SELFHACKAI) to an integer parameter
crashes the backend and exposes raw Oracle exception stack traces.

💥 Impact:
System Instability: Improper inputs can disrupt normal operation.
Sensitive Logic Disclosure: Reveals database package paths and error
lines.
Development Oversight: Breaks secure coding standards under ISO
27001 A.14.2.1.

🛡️ Mitigation: Implement strict input validation per parameter type.
Gracefully handle type errors and never expose raw exceptions to the
frontend.

Private | SH010333

6

http://www.mersinport.com.tr/

🧠 2. IP Ban Bypass via X-Forwarded-For Header High (CVSS 8.0)
Attackers can add the header X-Forwarded-For: 127.0.0.1 to spoof their IP
address and bypass IP-based access restrictions.

💥 Impact:
Access Control Bypass: Banned users regain access.
Security Trust Erosion: Perimeter rules become ineffective.
Compliance Breach: Violates ISO 27001 A.9.1.2 (Access restrictions).

🛡️ Mitigation: Only trust IP headers from known reverse proxies. Strip or
validate X-Forwarded-For headers at the edge (e.g., Cloudflare, NGINX).

🔓 3. CAPTCHA Bypass via Client-Side Only Control Medium (CVSS 6.8)
The CAPTCHA on the tariff form is validated only in the browser (client-
side). Requests without CAPTCHA can still be processed successfully by
the server.

💥 Impact:
Bot Abuse Risk: Attackers can automate tariff calculations.
Resource Consumption: Leads to potential denial of service or system
overload.
Compliance Gap: Violates secure processing under GDPR (Article 32).

🛡️ Mitigation: Implement server-side CAPTCHA verification using Google
reCAPTCHA or similar. Reject any request without a valid token.

Private | SH010333

7

📂 4. .NET Version Disclosure via 404 Error Page Low (CVSS 5.1)
Accessing a non-existent page returns a 404 with verbose information,
including .NET Framework Version: 4.0.30319 and ASP.NET Version:
4.8.4770.0.

💥 Impact:
Technology Fingerprinting: Attackers can look up vulnerabilities
specific to disclosed versions.
Increased Risk Surface: Helps target zero-days or known CVEs.
Security Misconfiguration: Violates OWASP Top 10 A06 (Vulnerable
Components).

🛡️ Mitigation: Disable detailed error messages in production. Replace
with generic error pages. Remove technology stack banners from
responses.

Private | SH010333

8

✅ Recommended Next Steps

🛑 Disable Technical Error Messages in Production
1. Prevent the application from exposing detailed backend errors (e.g.,

database packages, line numbers) to users.
2.C-Level Relevance: Revealing internal system details publicly

increases the risk of targeted cyberattacks and data breaches.

🧱 Enforce Server-Side CAPTCHA Validation
1. Ensure CAPTCHA checks are enforced on the backend, not just in the

browser.
2.C-Level Relevance: Without proper validation, bots can bypass

protection and overload business-critical services.

🛡️ Strengthen IP Access Controls
1. Reject spoofed IP addresses sent via headers like X-Forwarded-For.
2.C-Level Relevance: Malicious users can bypass bans and gain

unauthorized access, undermining network defenses.

🧪 Implement Input Validation & Type Safety
1. Validate all incoming parameters to ensure they are of the correct

type and format before processing.
2.C-Level Relevance: Prevents attackers from crashing or manipulating

backend logic, reducing operational risk.

Private | SH010333

9

📵 Hide Technology Stack & Framework Versions
 Remove version information (e.g., .NET Framework, ASP.NET) from
error pages.
C-Level Relevance: Publicly disclosing software versions helps
attackers identify vulnerabilities to exploit.

🔍 Launch a Full Secure Code Review
 Conduct a comprehensive review of application code with a security
focus.
C-Level Relevance: A small investment in code review can prevent
high-cost data breaches and regulatory fines.

📚 Align with GDPR & ISO 27001 Compliance
 Ensure all actions taken support GDPR Article 32 and ISO 27001
controls (A.12.6.2, A.14.2.1).
C-Level Relevance: Strengthening compliance reduces legal
exposure and demonstrates good governance.

Private | SH010333

10

🚨1.3.1 Worst Case Scenario:
💣 1. Targeted Cyberattack Leading to Data Breach
Exposed error messages and backend version leaks provide attackers
with a blueprint of the system. With this knowledge, they could exploit
known vulnerabilities in the .NET Framework or Oracle database, leading
to unauthorized access to internal data or systems.
Business Impact: Compromise of sensitive operational data, legal
liabilities under GDPR, and potential regulatory sanctions.

🤖 2. Automated Abuse & Service Disruption
Due to the missing server-side CAPTCHA validation, bots can flood key
application endpoints such as the tariff calculator. Combined with IP
spoofing bypass, attackers could generate massive automated traffic,
resulting in downtime or degraded service for legitimate users.
Operational Risk: Unavailable services, damage to partner trust, and
customer dissatisfaction.

🕵️‍♂️ 3. Escalation to Internal Infrastructure
Attackers using verbose error outputs (e.g., ORA-01722, stack traces) may
discover business logic flaws and elevate access beyond public
interfaces, potentially compromising internal systems or manipulating
backend operations.
Security Impact: Privilege escalation, loss of system integrity, and
reputational damage.

📉 4. Regulatory Penalties & Reputational Loss
Failure to comply with GDPR Article 32 or ISO 27001 due to these
misconfigurations and information leaks could trigger external audits,
fines, and public trust issues.
Financial Risk: GDPR penalties up to €20M or 4% of global turnover, in
addition to remediation costs and PR crisis management.

⚠️ Executive Takeaway
The current weaknesses are not just technical; they open doors to
business disruption, legal exposure, and long-term brand damage. In
today’s threat landscape, attackers don't need to break in—they just wait
for mistakes to expose themselves.

Private | SH010333

11

🏦 1. Operational Disruption
Critical endpoints like the tariff calculator can be abused by automated
bots due to CAPTCHA weaknesses. Combined with IP spoofing, this could
result in service slowdowns or outages, particularly during peak business
periods.
Impact: Loss of service availability, disrupted logistics workflows, and
partner dissatisfaction.

📉 2. Reputational Damage
Detailed error messages, version leaks, and missing controls create the
perception of a poorly protected digital infrastructure. In the event of
public discovery or breach, customer and partner trust may be
significantly eroded.
Impact: Damaged credibility, negative media exposure, and increased
scrutiny from stakeholders.

⚖️ 3. Regulatory & Legal Exposure
Current misconfigurations (e.g., verbose error handling, lack of access
controls) may violate GDPR Article 32 and ISO 27001:2013 clauses related
to secure development and information leakage.
Impact: Potential investigations, fines, and legal consequences tied to
inadequate security controls.

💰 4. Financial Risk
A successful exploit or sustained bot abuse could lead to system
downtime, emergency remediation costs, legal counsel involvement, and
possible fines — all of which translate into unplanned financial losses.
Impact: Business continuity costs, contract penalties, regulatory fines,
and IT recovery spending.

🧠 Executive Perspective
These are not theoretical risks. Each vulnerability represents a possible
entry point into the organization’s digital core — one that malicious
actors can exploit with minimal effort, but maximum consequence.
Addressing them is not only a security issue, it's a business resilience
priority.

📊 1.3.2 Business Impact

Private | SH010333

12

1.3.3 Technical Risk Assessment

The CVSS scores in the finding cards showing the vulnerabilities were
calculated according to this matrix.

Above, you can see a radar chart of findings based on CVSS scores. The
chart allows you to visually compare the risk level and CVSS score of
each vulnerability. This allows you to more easily analyze which
vulnerabilities stand out the most and which areas need to be prioritized
for improvement.

Private | SH010333

13

1.3.4 Solution Proposal for the Manager

As a result of our work, a number of important technical solution
suggestions are presented based on the findings revealed by this
penetration test. These suggestions are prepared in a way that
administrators can evaluate more directly and understandably. Detailed
findings and technical suggestions will be presented in the form of
finding cards on the following pages.

Secure Code Development Training: The software team should be
given comprehensive training on secure code development. Thanks
to this training, more secure designs will be created in all future
updates, thus preventing potential material and moral damages.
After the training, the application should not be released without
performing security tests for each feature developed. This approach
will create a culture that keeps security at the center of the
development process.

Creating a Security Life Cycle (SDLC): A software development life
cycle (SDLC) should be created. Each development process should
be subjected to security tests in line with DevSecOps principles. Thus,
each new feature and update should not be released without being
evaluated and tested in terms of security.

Use of Web Security Products: Security products such as a Web
Application Firewall (WAF) should be positioned on the web
application. Such solutions can provide protection against some
assumed vulnerabilities. However, it may be insufficient against
complex vulnerabilities such as business logic. However, thanks to its
logging capabilities, it will be possible to detect attackers even if an
attack occurs.

Private | SH010333

14

2 Approach

The following section outlines Self Hack AI’s security assessment
approach.

2.1 Testing Method

SelfHack AI performs security assessments to check the security of an
application or all application components. The tools, methods, and
techniques used by SelfHack AI fall into three categories:

Widely known in the computer security and "hacker" communities.

Internal tools developed to bypass the limitations of the conventional
hacker toolkit.

Expert knowledge; Security consultants look for vulnerabilities that
may not be discovered using automated tools.

2.2 Scope and Timeline

The security assessment was conducted from 25-03-2025 | 27-03-2025
The purpose of this test is to test https://www.example.com/ applications
for any vulnerabilities and common configuration issues.

 Scope Url: Https://www.example.com/

The test accounts used in the application were created so that they
could be registered and created by security consultants when necessary.

No checks were made to intentionally compromise the availability of
the services.

Private | SH010333

15

2.3 Test Classes

Systems in scope have been tested against the following test classes,
where applicable:

Tested: This attack vector has been tested by SelfHack as part of this
security assessment.

Exploitable: This attack vector has been successfully exploited during
this security assessment.

Private | SH010333

16

Private | SH010333

17

2.4 Disclaimer ⚠️

This report has been generated by SelfHack AI as part of a professional,
AI-assisted penetration testing engagement. It is intended solely for the
internal use of the authorized stakeholders of the target organization.
All findings, analyses, and recommendations presented in this document
are based on information available at the time of testing and within the
agreed testing scope. While reasonable care has been taken to identify
vulnerabilities, no security assessment can guarantee the complete
absence of risk.

SelfHack AI and its affiliates disclaim any liability for damages arising
directly or indirectly from the use or misuse of this report. This includes
but is not limited to business interruption, data loss, or third-party
compromise.

The information herein may contain sensitive technical and security-
related content. Unauthorized disclosure, reproduction, or distribution of
this report, in whole or in part, is strictly prohibited.

All tests were conducted under controlled conditions, with no intent to
cause service disruption or data manipulation. It is the responsibility of
the organization to validate, prioritize, and implement the recommended
mitigations in accordance with their internal risk management policies
and compliance requirements (e.g., ISO 27001, GDPR).

Private | SH010333

18

3 Summary of Vulnerability Risks and Number

This section contains all the vulnerabilities identified in
https://www.example.com/ application.

Risk assessment Vulnerabilities

Critical 0

High 2

Medium 1

Low 1

Total 4

Private | SH010333

Risks Icons

19

4 Detailed Analysis and Findings Cards
This section provides a detailed summary of the attacks and the
vulnerabilities detected.

4.1 Verbose Error Exposure on Parameter
Type Mismatch

Finding Description:

The endpoint https://www.example.com/mip/TariffCalc throws verbose
Oracle database error messages when an unexpected data type is
passed into the ard[size] parameter. This parameter expects an integer.
However, when a string such as 20-SELFHACKAI is submitted, the
application returns detailed backend errors, exposing sensitive internal
mechanisms.

The error response includes:

This level of detail reveals the backend package name, exact code
location (line number), and confirms the usage of Oracle DB—providing
attackers valuable insight into the application’s internals.

Affected URL:
 https://www.example.com/mip/TariffCalc

Analysis of Vulnerability:
Verbose Error Disclosure: The system leaks full Oracle errors to the
client.
Missing Input Type Validation: The server does not validate the input
type before using it in SQL queries.
Exposure of Internal Logic: Package names, function calls, and line
numbers are disclosed.
Precursor to SQL Injection or Reconnaissance: Attackers could map
out backend logic for further exploitation.

Private | SH010333

20

 High
CVSS 8.3

🧨 Proof of Concept (PoC):
An attacker sends a malformed input, e.g. ard[size]=20-SELFHACKAI.

The backend attempts to parse the value as an integer and fails.

The Oracle engine throws an ORA-01722 exception.

This is returned to the frontend verbatim, leaking:
DBMS type (Oracle)
Package and procedure name
Code line number
Internal structure layout (good for reconnaissance)

💥Potential Consequences of the Vulnerability:
Information Disclosure:

Exposes internals such as DB packages, line numbers, and
platform architecture.

Attack Surface Expansion:
Allows attackers to test more injection vectors or backend logic
pathways.

Security Misconfiguration:
Reflects poor error sanitization and absence of centralized
exception handling.

Compliance Violations:
Violates GDPR (Article 32), ISO 27001 (A.14.2.1 – Secure development
practices).

Private | SH010333

21

Vulnerability Screenshots:

4.1 Verbose Error Exposure on Parameter Type Mismatch

Private | SH010333

22

Solution Proposal:

✅ Code-Level Mitigation:
🛠️Type Validation:

🛠️Sanitized Exception Handling:

🛠️Avoid exposing database stack traces in user-facing responses.

🛡 Server-Level Mitigation:
Global Error Handling Middleware:

Implement global exception handlers in frameworks like Spring
Boot, .NET, or Node.js to mask technical errors from end users.

Web Application Firewall (WAF):
Configure the WAF to detect and block verbose database
errors (e.g., patterns like ORA- or SQLSTATE in HTTP responses).

Custom Error Pages:
Return consistent and non-descriptive error messages such as:

Private | SH010333

23

📅 Remediation Timeline:

Private | SH010333

24

4.2 IP Block Bypass via X-Forwarded-For
Header Spoofing

Finding Description:

The endpoint /tr on the domain https://www.example.com implements
IP-based blocking. However, this mechanism can be bypassed by
injecting a forged IP address using the X-Forwarded-For HTTP header.
When this header is set to 127.0.0.1, the server returns a 200 OK response. If
the header is removed, the server returns a 302 Found status and
redirects the user to /Site/BlockedIPPage.html.

This reveals a critical misconfiguration where the backend relies on
unsanitized X-Forwarded-For values to determine IP trust.

Affected URL:
https://www.example.com/tr

Analysis of Vulnerability:

Trusting Untrusted Headers: The backend trusts the X-Forwarded-For
value without verifying if the request originates from a legitimate
proxy.

IP-Based Logic Bypass: The IP restriction mechanism is ineffective due
to lack of header validation or source IP verification.

Abuse of Localhost Trust: Setting the value to 127.0.0.1 (loopback)
exploits internal trust configurations, allowing blocked users full
access.

Security Misconfiguration: Reflects improper use of HTTP headers in
access control mechanisms.

 High
CVSS 8.0

Private | SH010333

25

🧨 Proof of Concept (PoC):
Attacker is blocked by IP and redirected to /Site/BlockedIPPage.html.

They resend the same request with:

The server interprets this as a trusted internal request and returns full
access (HTTP 200 OK).

The attacker regains access despite being blacklisted.

💥Potential Consequences of the Vulnerability:
Access Control Bypass:

Users who are banned or geo-blocked can still access protected areas.

Abuse by Bots or Attackers:
Automated tools can spoof headers to circumvent IP-based rate limits or
bans.

Reputation Risk:
Security filters meant to deter bad actors are rendered useless.

Compliance Violation:
Failing to enforce proper IP restrictions may breach GDPR/ISO 27001
access control obligations (A.9.1.2).

Private | SH010333

26

Vulnerability Screenshots:

4.2 IP Block Bypass via X-Forwarded-For Header Spoofing

Private | SH010333

27

Solution Proposal:

✅ Code-Level Mitigation:
🛠️ Sanitize X-Forwarded-For Header:

Only honor this header when the request comes through trusted
reverse proxies (e.g., Cloudflare, NGINX, AWS ALB).
Use middleware or frameworks with strict IP source chaining policies.

🛠️ Use Real Client IPs from Trusted Proxies:

🛠️ Reject Known Malicious Patterns:
If X-Forwarded-For contains 127.0.0.1, localhost, or private IP
ranges, reject the request.

🛡 Server-Level Mitigation:
🛠️ Web Server / Reverse Proxy Config:

Configure NGINX or Apache to strip X-Forwarded-For from incoming
requests unless set by known upstreams.

Example (NGINX):

🛠️ Use Real IP Modules:
In NGINX: Use ngx_http_realip_module to extract client IP only if the
request comes from Cloudflare or another proxy.

🛠️ Cloudflare Configuration:
Enable "True Client IP" or restore original visitor IP via Cloudflare
headers (e.g., CF-Connecting-IP).

Private | SH010333

28

📅 Remediation Timeline:

Private | SH010333

29

4.3 CAPTCHA Bypass via
Client-Side Only Validation

Finding Description:

The endpoint https://www.example.com/mip/TariffCalc/Home/Hesapla?
Length=4 was tested and found to be vulnerable to CAPTCHA bypass.
Although a CAPTCHA is visibly present on the form interface, the
validation is only enforced on the client-side, and the backend does not
verify CAPTCHA tokens before processing requests.

As a result, attackers can submit automated POST requests directly to
the endpoint without solving the CAPTCHA, and still receive a valid
response.

This undermines the core purpose of CAPTCHA, which is to prevent bots
from abusing the form or system.

Affected URL:
https://www.example.com/mip/TariffCalc/Home/Hesapla

Analysis of Vulnerability:

Missing Server-Side Validation: CAPTCHA token is never validated on
the server.

Bot Mitigation Failure: Malicious scripts and bots can flood the
endpoint.

Business Logic Flaw: Assumes CAPTCHA presence equates to
protection, but the server-side lacks enforcement.

.

Private | SH010333

30

Medium
CVSS 6.8

🧨 Proof of Concept (PoC):
Attacker analyzes form submission in browser and extracts request
structure.

They replicate the request without the CAPTCHA payload using a tool
like Burp Suite, curl, or a script.

The request is accepted and processed by the server.

No CAPTCHA check is performed; the attacker can now automate
tariff calculations or spam the service.

💥Potential Consequences of the Vulnerability:
Abuse of Business Logic:

Automated abuse of tariff calculations can lead to service
degradation or data scraping.

Denial of Service Vector:
Attackers can use bots to send high volumes of requests, causing
slowdowns.

Trust & Reputation Loss:
Users may lose trust in the service’s integrity if automation goes
uncontrolled.

Private | SH010333

31

Private | SH010333

Vulnerability Screenshots:

4.3 CAPTCHA Bypass via Client-Side Only Validation

32

Solution Proposal:

✅ Code-Level Mitigation:
🛠️ Enforce CAPTCHA Token Verification on Server:

Backend should receive a CAPTCHA token (e.g., reCAPTCHA v2/v3)
and verify it via Google/Cloudflare API:

🛠️ Token Expiry and Replay Protection:
Tokens must be one-time use only, validated within a short TTL (Time-
To-Live).

🛠️ Mandatory Token Presence:
Reject all requests that do not include a valid CAPTCHA field in the
payload.

🛡 Server-Level Mitigation:
🛠️ Rate Limiting:

Enforce IP-based throttling for endpoints such as
/TariffCalc/Home/Hesapla.

🛠️ WAF Integration:
Configure rules to detect rapid repeated POST requests lacking
CAPTCHA tokens.
Block behavior resembling automated scripts.

🛠️ Security Headers:
Add HTTP security headers to prevent frontend CAPTCHA scripts from
being bypassed or manipulated.

Private | SH010333

33

📅 Remediation Timeline:

Private | SH010333

34

4.4 Technology Stack & Version Disclosure
via Verbose Error Pages

Finding Description:

The URL https://www.example.com/mip/wbreport/Home/SELFHACKAI
triggers an HTTP 404 Not Found error. However, instead of serving a
generic or custom error page, the server leaks detailed version
information about the application’s underlying technology stack.

The following internal details are disclosed in the response:

This type of verbose error message provides attackers with valuable
reconnaissance data, helping them tailor specific exploit payloads
based on known vulnerabilities for those software versions.

Affected URL:
https://www.example.com/mip/wbreport/Home/SELFHACKAI

Analysis of Vulnerability:

Information Disclosure: Exact .NET Framework and ASP.NET versions
are exposed.

Reconnaissance Enabler: Attackers can correlate the versions with
known CVEs (e.g., RCE, deserialization, padding oracle vulnerabilities).

Missing Custom Error Handling: Default error page is returned, which
reveals backend metadata.

Private | SH010333

Low
CVSS 5.1

35

🧨 Proof of Concept (PoC):
Attacker crafts a request to a non-existing endpoint
(/wbreport/Home/SELFHACKAI).

The server responds with a verbose 404 page containing full
framework version details.

Attacker uses this to search for public exploits targeting:
ASP.NET 4.8.4770.0
.NET Framework 4.0.30319

Follow-up attacks may include deserialization, RCE, or DoS attempts
aligned with the exposed software versions.

💥Potential Consequences of the Vulnerability:

Exploit Development: Attackers can develop targeted payloads
against specific .NET vulnerabilities.

Increased Attack Surface: Future zero-days may target this specific
version range.

Compliance Violation: Violates best practices under OWASP Top 10
(A06:2021 – Vulnerable and Outdated Components).

Reputation Risk: Internal information leakage is a sign of weak
security hygiene.

Private | SH010333

36

Private | SH010333

Vulnerability Screenshots:

4.4 Technology Stack & Version Disclosure via Verbose Error Pages

37

Solution Proposal:

✅ Code-Level Mitigation:
🛠️ Custom Error Pages:

Configure the web application to serve generic user-friendly error
pages for all 404, 500, and 403 errors.
ASP.NET (web.config):

🛠️ Remove Stack and Version Info:
Disable debug mode in production:

🛡 Server-Level Mitigation:
🛠️ IIS Configuration:
In web.config or IIS Manager, configure generic error pages and prevent
detailed stack or version information from being returned.

🛠️ Header Stripping:
Use a reverse proxy (e.g., NGINX, Cloudflare) to strip or suppress
Server, X-AspNet-Version, and similar headers.

Private | SH010333

38

📅 Remediation Timeline:

Private | SH010333

39

Version Date Status/Changes Created By Person in charge

1.0 27-03-2025 Last Version Self Hack AI Self Hack AI

5 Version History

Addition A.1 Risk Calculation
All discovered security risks were assessed with a risk score. The risk
score is calculated from a risk matrix consisting of probability and
severity. Probability describes the probability that an attacker will
discover and exploit the vulnerability. Severity refers to the severity and
impact of the vulnerability. Since severity affects risk more strongly than
probability, it is included in the square of the equation. Probability and
severity are multiplied to determine the risk score, which allows the
assessment of the risks posed by a vulnerability.

To allow for a simple textual description of the risk, the scores were
classified into four main categories:

Risk assessment Risk Score

Critical

High

Medium

Low

Total

81-100

41-80

21-40

1-10

100

Private | SH010333

40

To determine the total risk for a system, a network, or an entire company,
the individual risks need to be summed up. However, simple addition is
not valid because it does not match the actual behavior of individual
vulnerabilities relative to each other. Two vulnerabilities with the same
risk do not result in an overall risk that is twice as high. Therefore, the
energy sum formula is used to calculate the total risk.

According to the formula given and based on the specified vulnerability
ratings, your total overall risk score is approximately 61.2 This result
reflects the combined effect of the risks and is considered a high score
due to the weight of critical vulnerabilities.

However, it is risky to make a fractional estimate in penetration test
reports. Therefore, the highest possible risk value is 100. If the total risk
exceeds this value, it is fixed at 100 points. Your approximate risk score is
61.2 , rounded to the risk value of 61.0 as stated above.

Addition A.2 Total Risk Score

Private | SH010333

41

WWW.SELFHACK.FI
info@selfhack.fi

Helsinki, Finland
Selfhack OY

Business ID: 3448051-6

